RAFT 2

RAFT(Retrieval Augemented Fine tuning)에서 어떤 식으로 Fine tuning을 해야할까요?

지난 포스트에서, RAG을 할 바에야 RAFT를 하는 것이 낫다는 결론을 내면서 끝을 냈습니다. 하지만 실제로 어떤 식으로 Fine-tuning 을 해야되는 지에 대해서는 알아보지 않았는데요, 이번 포스트에서는 어떤식으로 Fine-tuning을 하는지에 대해서 실질적인 예시를 가져와서 알아보도록 하겠습니다.   위의 example은 실제 training 에 사용되는 데이터를 가지고 온 것입니다.  이를 활용하면, 실제 finetune 하는게 그렇게 어렵지 않을 것 같습니다. 하지만 확실히, 그냥 finetuning 하는것보다는 훨씬 공수가 많이 드는 작업이긴 할 것 같습니다. 실제 가져와야되는 데이터들이 많으니깐 말이죠. 그리고 실제 context에서 일일히 참조가 되는 정보를 뽑아서 제공해줘야되기도 하..

Deep Learning/NLP 2024.07.17

RAG의 새로운 대안 .. RAFT(RAG 할바에야 RAFT!)

요즘 RAG(Retrieval Augmented Generation)를 모르는 사람이 없을 정도로 RAG가 대세로 떠오르고 있습니다. RAG를 모르는 사람들을 위해서 간단하게 설명하자면, RAG란, Base Document가 있고, 거기를 참고해서 Q&A를 하게 만드는 것을 말합니다. Prompt Engineering 을 어떻게 하느냐에 따라 물론 달라지겠지만, Hallucination을 방지하기 위해서 많이 씁니다. 하지만 단점으로는, Base model의 성능에 너무 많은 의존을 하게 되고, 그러다 보니 Foundation 모델의 성능이 떨어지게 되면 성능의 퀄리티가 떨어지는 단점이 있습니다. Foundation model 의 성능에 의존하다 보니, 가장 좋은 모델 (가령, GPT 4)를 쓸 수 밖에..

Deep Learning/NLP 2024.07.16